Search results for "Metal-matrix composite"

showing 2 items of 2 documents

A review on basalt fibre and its composites

2015

Abstract In recent years, both industrial and academic world are focussing their attention toward the development of sustainable composites, reinforced with natural fibres. In particular, among the natural fibres (i.e. animal, vegetable or mineral) that can be used as reinforcement, the basalt ones represent the most interesting for their properties. The aim of this review is to illustrate the results of research on this topical subject. In the introduction, mechanical, thermal and chemical properties of basalt fibre have been reviewed. Moreover, its main manufacturing technologies have been described. Then, the effect of using this mineral fibre as reinforcement of different matrices as po…

Basaltchemistry.chemical_classificationA. Metal-matrix composites (MMCs)ThermoplasticMaterials sciencePolymer-matrix compositeA. Ceramic-matrix composites (CMCs)Mechanical EngineeringThermosetting polymerMetal-matrix compositeIndustrial and Manufacturing EngineeringCeramic-matrix compositeA. Polymer-matrix composites (PMCs)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsCeramics and CompositesComposite materialA. Ceramic-matrix composites (CMCs); A. Metal-matrix composites (MMCs); A. Polymer-matrix composites (PMCs); Basalt fibreBasalt fibreComposites Part B: Engineering
researchProduct

Silica aerogel–metal composites produced by supercritical adsorption

2010

Abstract Silica aerogel has been loaded with ruthenium acetyl acetonate (Ru(acac) 3 ) by adsorption from supercritical carbon dioxide. Adsorption isotherms and kinetics were measured at different pressures and temperatures. The properties of impregnated aerogel were obtained by optical and electron microscopy (SEM), X-ray microanalysis (EDX) and thermogravimetric analysis (TGA). Results showed that Ru(acac) 3 can be uniformly dispersed into the aerogel up to 5 wt%. Moreover, precursor loading is controllable by properly changing operating conditions. The adsorbed metallorganic compound has been reduced to elemental ruthenium by heat treatment without inducing degradation and morphological c…

Thermogravimetric analysisSupercritical carbon dioxideMaterials scienceMetal-matrix compositesGeneral Chemical EngineeringAerogelschemistry.chemical_elementSilicaAerogelCondensed Matter PhysicsMicroanalysisRutheniumGas adsorptionMetalAdsorptionChemical engineeringchemistryvisual_artvisual_art.visual_art_mediumPhysical and Theoretical ChemistrySupercritical adsorptionCompositesThe Journal of Supercritical Fluids
researchProduct